A flexible distribution class for count data
نویسندگان
چکیده
*Correspondence: [email protected] 1Department of Mathematics and Statistics, Georgetown University, 306 St. Mary’s Hall, Washington, DC, 20057, USA Full list of author information is available at the end of the article Abstract The Poisson, geometric and Bernoulli distributions are special cases of a flexible count distribution, namely the Conway-Maxwell-Poisson (CMP) distribution – a two-parameter generalization of the Poisson distribution that can accommodate data overor under-dispersion. This work further generalizes the ideas of the CMP distribution by considering sums of CMP random variables to establish a flexible class of distributions that encompasses the Poisson, negative binomial, and binomial distributions as special cases. This sum-of-Conway-Maxwell-Poissons (sCMP) class captures the CMP and its special cases, as well as the classical negative binomial and binomial distributions. Through simulated and real data examples, we demonstrate this model’s flexibility, encompassing several classical distributions as well as other count data distributions containing significant data dispersion.
منابع مشابه
A Flexible Class of Skew Logistic Distribution
‎Here we consider a new class of skew logistic distribution as a generalized mixture of the standard logistic and skew logistic distributions‎, ‎and study some of its important aspects‎. ‎The tail behaviour of the distribution is compared with that of the skew logistic distribution and a location-scale extension of the distribution is proposed‎. ‎Fu...
متن کاملOn Bivariate Generalized Exponential-Power Series Class of Distributions
In this paper, we introduce a new class of bivariate distributions by compounding the bivariate generalized exponential and power-series distributions. This new class contains the bivariate generalized exponential-Poisson, bivariate generalized exponential-logarithmic, bivariate generalized exponential-binomial and bivariate generalized exponential-negative binomial distributions as specia...
متن کاملA Flexible Skew-Generalized Normal Distribution
In this paper, we consider a flexible skew-generalized normal distribution. This distribution is denoted by $FSGN(/lambda _1, /lambda _2 /theta)$. It contains the normal, skew-normal (Azzalini, 1985), skew generalized normal (Arellano-Valle et al., 2004) and skew flexible-normal (Gomez et al., 2011) distributions as special cases. Some important properties of this distribution are establi...
متن کاملA Discrete Kumaraswamy Marshall-Olkin Exponential Distribution
Finding new families of distributions has become a popular tool in statistical research. In this article, we introduce a new flexible four-parameter discrete model based on the Marshall-Olkin approach, namely, the discrete Kumaraswamy Marshall-Olkin exponential distribution. The proposed distribution can be viewed as another generalization of the geometric distribution and enfolds some importan...
متن کاملIntroducing of Dirichlet process prior in the Nonparametric Bayesian models frame work
Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...
متن کامل